Source code for pyamg.krylov._cg

"""Conjugate Gradient Krylov solver."""

import warnings
from warnings import warn
import numpy as np
from scipy import sparse
from ..util.linalg import norm
from ..util import make_system


[docs] def cg(A, b, x0=None, tol=1e-5, criteria='rr', maxiter=None, M=None, callback=None, residuals=None): """Conjugate Gradient algorithm. Solves the linear system Ax = b. Left preconditioning is supported. Parameters ---------- A : array, matrix, sparse matrix, LinearOperator n x n, linear system to solve b : array, matrix right hand side, shape is (n,) or (n,1) x0 : array, matrix initial guess, default is a vector of zeros tol : float Tolerance for stopping criteria criteria : string Stopping criteria, let r=r_k, x=x_k 'rr': ||r|| < tol ||b|| 'rr+': ||r|| < tol (||b|| + ||A||_F ||x||) 'MrMr': ||M r|| < tol ||M b|| 'rMr': <r, Mr>^1/2 < tol if ||b||=0, then set ||b||=1 for these tests. maxiter : int maximum number of iterations allowed M : array, matrix, sparse matrix, LinearOperator n x n, inverse preconditioner, i.e. solve M A x = M b. callback : function User-supplied function is called after each iteration as callback(xk), where xk is the current solution vector residuals : list residual history in the 2-norm, including the initial residual Returns ------- (xk, info) xk : an updated guess after k iterations to the solution of Ax = b info : halting status == ======================================= 0 successful exit >0 convergence to tolerance not achieved, return iteration count instead. <0 numerical breakdown, or illegal input == ======================================= Notes ----- The LinearOperator class is in scipy.sparse.linalg. Use this class if you prefer to define A or M as a mat-vec routine as opposed to explicitly constructing the matrix. Examples -------- >>> from pyamg.krylov import cg >>> from pyamg.util.linalg import norm >>> import numpy as np >>> from pyamg.gallery import poisson >>> A = poisson((10,10)) >>> b = np.ones((A.shape[0],)) >>> (x,flag) = cg(A,b, maxiter=2, tol=1e-8) >>> print(f'{norm(b - A*x):.6}') 10.9371 References ---------- .. [1] Yousef Saad, "Iterative Methods for Sparse Linear Systems, Second Edition", SIAM, pp. 262-67, 2003 http://www-users.cs.umn.edu/~saad/books.html """ # Convert inputs to linear system, with error checking A, M, x, b, postprocess = make_system(A, M, x0, b) # Ensure that warnings are always reissued from this function warnings.filterwarnings('always', module='pyamg.krylov._cg') # determine maxiter if maxiter is None: maxiter = int(1.3*len(b)) + 2 elif maxiter < 1: raise ValueError('Number of iterations must be positive') # setup method r = b - A @ x z = M @ r p = z.copy() rz = np.inner(r.conjugate(), z) normr = np.linalg.norm(r) if residuals is not None: residuals[:] = [normr] # initial residual # Check initial guess if b != 0, normb = norm(b) if normb == 0.0: normb = 1.0 # reset so that tol is unscaled # set the stopping criteria (see the docstring) if criteria == 'rr': rtol = tol * normb elif criteria == 'rr+': if sparse.issparse(A.A): normA = norm(A.A.data) elif isinstance(A.A, np.ndarray): normA = norm(np.ravel(A.A)) else: raise ValueError('Unable to use ||A||_F with the current matrix format.') rtol = tol * (normA * np.linalg.norm(x) + normb) elif criteria == 'MrMr': normr = norm(z) normMb = norm(M @ b) rtol = tol * normMb elif criteria == 'rMr': normr = np.sqrt(rz) rtol = tol else: raise ValueError('Invalid stopping criteria.') if normr < rtol: return (postprocess(x), 0) # How often should r be recomputed recompute_r = 8 it = 0 while True: # Step number in Saad's pseudocode Ap = A @ p rz_old = rz pAp = np.inner(Ap.conjugate(), p) # check curvature of A if pAp < 0.0: warn('\nIndefinite matrix detected in CG, aborting\n') return (postprocess(x), -1) alpha = rz/pAp # 3 x += alpha * p # 4 if np.mod(it, recompute_r) and it > 0: # 5 r -= alpha * Ap else: r = b - A @ x z = M @ r # 6 rz = np.inner(r.conjugate(), z) if rz < 0.0: # check curvature of M warn('\nIndefinite preconditioner detected in CG, aborting\n') return (postprocess(x), -1) beta = rz/rz_old # 7 p *= beta # 8 p += z it += 1 normr = np.linalg.norm(r) if residuals is not None: residuals.append(normr) if callback is not None: callback(x) # set the stopping criteria (see the docstring) if criteria == 'rr': rtol = tol * normb elif criteria == 'rr+': rtol = tol * (normA * np.linalg.norm(x) + normb) elif criteria == 'MrMr': normr = norm(z) rtol = tol * normMb elif criteria == 'rMr': normr = np.sqrt(rz) rtol = tol if normr < rtol: return (postprocess(x), 0) if it == maxiter: return (postprocess(x), it)