Source code for pyamg.krylov._gmres_householder

"""GMRES Housholder-based implementations."""
import warnings
from warnings import warn

import numpy as np
from scipy.linalg import get_lapack_funcs
import scipy as sp
from ..util.linalg import norm
from ..util import make_system
from .. import amg_core


def _mysign(x):
    """Return complex sign of x."""
    if x == 0.0:
        return 1.0
    # return the complex "sign"
    return x / np.abs(x)


[docs] def gmres_householder(A, b, x0=None, tol=1e-5, restart=None, maxiter=None, M=None, callback=None, residuals=None, restrt=None): """Generalized Minimum Residual Method (GMRES) based on Housholder. GMRES iteratively refines the initial solution guess to the system Ax = b. Householder reflections are used for orthogonalization. Left preconditioning, leading to preconditioned residuals. Parameters ---------- A : array, matrix, sparse matrix, LinearOperator n x n, linear system to solve b : array, matrix right hand side, shape is (n,) or (n,1) x0 : array, matrix initial guess, default is a vector of zeros tol : float Tolerance for stopping criteria, let r=r_k ||M r|| < tol ||M b|| if ||b||=0, then set ||M b||=1 for these tests. restart : None, int - if int, restart is max number of inner iterations and maxiter is the max number of outer iterations - if None, do not restart GMRES, and max number of inner iterations is maxiter maxiter : None, int - if restart is None, maxiter is the max number of inner iterations and GMRES does not restart - if restart is int, maxiter is the max number of outer iterations, and restart is the max number of inner iterations - defaults to min(n,40) if restart=None M : array, matrix, sparse matrix, LinearOperator n x n, inverted preconditioner, i.e. solve M A x = M b. callback : function User-supplied function is called after each iteration as callback(xk), where xk is the current solution vector residuals : list preconditioned residual history in the 2-norm, including the initial preconditioned residual reorth : boolean If True, then a check is made whether to re-orthogonalize the Krylov space each GMRES iteration restrt : None, int Deprecated. See restart. Returns ------- (xk, info) xk : an updated guess after k iterations to the solution of Ax = b info : halting status == ======================================= 0 successful exit >0 convergence to tolerance not achieved, return iteration count instead. <0 numerical breakdown, or illegal input == ======================================= Notes ----- The LinearOperator class is in scipy.sparse.linalg. Use this class if you prefer to define A or M as a mat-vec routine as opposed to explicitly constructing the matrix. For robustness, modified Gram-Schmidt is used to orthogonalize the Krylov Space Givens Rotations are used to provide the residual norm each iteration The residual is the *preconditioned* residual. Examples -------- >>> from pyamg.krylov import gmres >>> from pyamg.util.linalg import norm >>> import numpy as np >>> from pyamg.gallery import poisson >>> A = poisson((10, 10)) >>> b = np.ones((A.shape[0],)) >>> (x, flag) = gmres(A, b, maxiter=2, tol=1e-8, orthog='householder') >>> print(f'{norm(b - A*x):.6}') 6.54282 References ---------- .. [1] Yousef Saad, "Iterative Methods for Sparse Linear Systems, Second Edition", SIAM, pp. 151-172, pp. 272-275, 2003 http://www-users.cs.umn.edu/~saad/books.html """ if restrt is not None: if restart is not None: raise ValueError('Only use restart, not restrt (deprecated).') restart = restrt msg = ('The keyword argument "restrt" is deprecated and will ' 'be removed in 2024. Use "restart" instead.') warnings.warn(msg, DeprecationWarning, stacklevel=1) # Convert inputs to linear system, with error checking A, M, x, b, postprocess = make_system(A, M, x0, b) n = A.shape[0] # Ensure that warnings are always reissued from this function warnings.filterwarnings('always', module='pyamg.krylov._gmres_householder') # Get fast access to underlying LAPACK routine [lartg] = get_lapack_funcs(['lartg'], [x]) # Set number of outer and inner iterations # If no restarts, # then set max_inner=maxiter and max_outer=n # If restarts are set, # then set max_inner=restart and max_outer=maxiter if restart: if maxiter: max_outer = maxiter else: max_outer = 1 if restart > n: warn('Setting restart to maximum allowed, n.') restart = n max_inner = restart else: max_outer = 1 if maxiter is None: maxiter = min(n, 40) elif maxiter > n: warn('Setting maxiter to maximum allowed, n.') maxiter = n max_inner = maxiter # Is this a one dimensional matrix? if n == 1: entry = np.ravel(A @ np.array([1.0], dtype=x.dtype)) return (postprocess(b/entry), 0) # Prep for method r = b - A @ x # Apply preconditioner r = M @ r normr = norm(r) if residuals is not None: residuals[:] = [normr] # initial residual # Check initial guess if b != 0, normb = norm(b) if normb == 0.0: normMb = 1.0 # reset so that tol is unscaled else: normMb = norm(M @ b) # set the stopping criteria (see the docstring) if normr < tol * normMb: return (postprocess(x), 0) # Use separate variable to track iterations. If convergence fails, we # cannot simply report niter = (outer-1)*max_outer + inner. Numerical # error could cause the inner loop to halt while the actual ||r|| > tol. niter = 0 # Begin GMRES for _outer in range(max_outer): # Calculate vector w, which defines the Householder reflector # Take shortcut in calculating, # w = r + sign(r[1])*||r||_2*e_1 w = r beta = _mysign(w[0]) * normr w[0] = w[0] + beta w[:] = w / norm(w) # Preallocate for Krylov vectors, Householder reflectors and # Hessenberg matrix # Space required is O(n*max_inner) # Givens Rotations Q = np.zeros((4 * max_inner,), dtype=x.dtype) # upper Hessenberg matrix (made upper tri with Givens Rotations) H = np.zeros((max_inner, max_inner), dtype=x.dtype) # Householder reflectors W = np.zeros((max_inner+1, n), dtype=x.dtype) W[0, :] = w # Multiply r with (I - 2*w*w.T), i.e. apply the Householder reflector # This is the RHS vector for the problem in the Krylov Space g = np.zeros((n,), dtype=x.dtype) g[0] = -beta for inner in range(max_inner): # Calculate Krylov vector in two steps # (1) Calculate v = P_j = (I - 2*w*w.T)v, where k = inner v = -2.0 * np.conjugate(w[inner]) * w v[inner] = v[inner] + 1.0 # (2) Calculate the rest, v = P_1*P_2*P_3...P_{j-1}*ej. # for j in range(inner-1,-1,-1): # v -= 2.0*dot(conjugate(W[j,:]), v)*W[j,:] amg_core.apply_householders(v, np.ravel(W), n, inner-1, -1, -1) # Calculate new search direction v = A @ v # Apply preconditioner v = M @ v # Check for nan, inf # if isnan(v).any() or isinf(v).any(): # warn('inf or nan after application of preconditioner') # return(postprocess(x), -1) # Factor in all Householder orthogonal reflections on new search # direction # for j in range(inner+1): # v -= 2.0*dot(conjugate(W[j,:]), v)*W[j,:] amg_core.apply_householders(v, np.ravel(W), n, 0, inner+1, 1) # Calculate next Householder reflector, w # w = v[inner+1:] + sign(v[inner+1])*||v[inner+1:]||_2*e_{inner+1) # Note that if max_inner = n, then this is unnecessary for the # last inner iteration, when inner = n-1. Here we do not need # to calculate a Householder reflector or Givens rotation because # nnz(v) is already the desired length, i.e. we do not need to # zero anything out. if inner != n-1: if inner < (max_inner-1): w = W[inner+1, :] vslice = v[inner+1:] alpha = norm(vslice) if alpha != 0: alpha = _mysign(vslice[0]) * alpha # do not need the final reflector for future calculations if inner < (max_inner-1): w[inner+1:] = vslice w[inner+1] += alpha w[:] = w / norm(w) # Apply new reflector to v # v = v - 2.0*w*(w.T*v) v[inner+1] = -alpha v[inner+2:] = 0.0 if inner > 0: # Apply all previous Givens Rotations to v amg_core.apply_givens(Q, v, n, inner) # Calculate the next Givens rotation, where j = inner Note that if # max_inner = n, then this is unnecessary for the last inner # iteration, when inner = n-1. Here we do not need to # calculate a Householder reflector or Givens rotation because # nnz(v) is already the desired length, i.e. we do not need to zero # anything out. if inner != n-1: if v[inner+1] != 0: [c, s, r] = lartg(v[inner], v[inner+1]) Qblock = np.array([[c, s], [-np.conjugate(s), c]], dtype=x.dtype) Q[(inner * 4): ((inner+1) * 4)] = np.ravel(Qblock).copy() # Apply Givens Rotation to g, the RHS for the linear system # in the Krylov Subspace. Note that this dot does a matrix # multiply, not an actual dot product where a conjugate # transpose is taken g[inner:inner+2] = np.dot(Qblock, g[inner:inner+2]) # Apply effect of Givens Rotation to v v[inner] = np.dot(Qblock[0, :], v[inner:inner+2]) v[inner+1] = 0.0 # Write to upper Hessenberg Matrix, # the LHS for the linear system in the Krylov Subspace H[:, inner] = v[0:max_inner] niter += 1 # Don't update normr if last inner iteration, because # normr is calculated directly after this loop ends. if inner < max_inner-1: normr = np.abs(g[inner+1]) if normr < tol * normMb: break if residuals is not None: residuals.append(normr) if callback is not None: y = sp.linalg.solve(H[0:(inner+1), 0:(inner+1)], g[0:(inner+1)]) update = np.zeros(x.shape, dtype=x.dtype) amg_core.householder_hornerscheme(update, np.ravel(W), np.ravel(y), n, inner, -1, -1) callback(x + update) # end inner loop, back to outer loop # Find best update to x in Krylov Space, V. Solve inner+1 x inner+1 # system. Apparently this is the best way to solve a triangular system # in the magical world of scipy # piv = arange(inner+1) # y = lu_solve((H[0:(inner+1), 0:(inner+1)], piv), g[0:(inner+1)], # trans=0) y = sp.linalg.solve(H[0:(inner+1), 0:(inner+1)], g[0:(inner+1)]) # Use Horner like Scheme to map solution, y, back to original space. # Note that we do not use the last reflector. update = np.zeros(x.shape, dtype=x.dtype) # for j in range(inner,-1,-1): # update[j] += y[j] # # Apply j-th reflector, (I - 2.0*w_j*w_j.T)*update # update -= 2.0*dot(conjugate(W[j,:]), update)*W[j,:] amg_core.householder_hornerscheme(update, np.ravel(W), np.ravel(y), n, inner, -1, -1) x[:] = x + update r = b - A @ x # Apply preconditioner r = M @ r normr = norm(r) # Allow user access to the iterates if callback is not None: callback(x) if residuals is not None: residuals.append(normr) # Has GMRES stagnated? indices = x != 0 if indices.any(): change = np.max(np.abs(update[indices] / x[indices])) if change < 1e-12: # No change, halt return (postprocess(x), -1) # test for convergence if normr < tol * normMb: return (postprocess(x), 0) # end outer loop return (postprocess(x), niter)